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A tiling of space by tiles that have all hexagonal faces and are in®nite in one

direction is described. The tiling is simple (four tiles meet at each vertex, three at

each edge and two at each face) and carries a 4-connected net whose vertices are

the lattice complex S* with symmetry Ia�3d. The tiling is closely related to the

densest cubic cylinder packing, ÿ. It is shown that the other invariant cubic

lattice complexes unique to Ia�3d (Y** and V*) are also related to the same

cylinder packing.

1. Definitions and terminology

Simple tilings of three-dimensional Euclidean space (hereafter just

`space') are those in which exactly four tiles meet at each vertex,

three at each edge and two at each face. Normally the tiles are ®nite

simple polyhedra (those in which exactly three edges meet in each

vertex). Physical examples of such structures are provided by foams

and related cellular materials such as plant cell tissue and the

assembly of grains in polycrystalline materials. On the atomic level,

the framework of tetrahedrally coordinated atoms in materials such

as zeolites often corresponds to a simple tiling; the structure of

faujasite provides a well known example. We say that the framework

of edges and vertices is a net carried by the tiling. If the edges are all

equal and correspond to the shortest distances between vertices, the

positions of the vertices correspond to the centers of equal spheres in

contact and we say that the structure is a sphere packing. Packings of

spheres, and other objects such as cylinders, in which all the objects

are related by symmetry are referred to as homogeneous. Structures

of this sort are of particular interest to us as the underlying geome-

tries of materials that are the targets of designed synthesis (O'Keeffe

et al., 2000)

Tilings are conveniently classi®ed by their transitivity hpqrsi which

signi®es that the structure has p kinds of vertex, q kinds of edge, r

kinds of face and s kinds of tile, Tilings with s = 1 are known as

isohedral and with p = 1 as vertex-transitive or uninodal. The dual of a

tiling is the structure in which a vertex is associated with each of the

tiles, and edges connecting the vertices pass through faces of the tiles

(note that dualization must be carried out in such a way that the dual

of the dual is the original tiling, at least up to topology). The tran-

sitivity of the dual tiling is hsrqpi. A given net may be carried by more

than one tiling, as we see below.

In a packing of objects such as spheres and cylinders, not all of

space is ®lled. Positions of local maximum distance from the surface

of the object are the location of holes on the packing. Holes equi-

distant from four neighbors are tetrahedral holes.

A detailed account of lattice complexes and their occurrences

is given by Fischer & Koch (1983) and the invariant cubic

ones mentioned here are illustrated by O'Keeffe & Hyde

(1996).

2. Cubic sphere and cylinder packings with tetrahedral holes
and their dual tilings

The body-centered cubic lattice is the only homogeneous cubic

sphere packing in which all the holes are tetrahedral and related by

symmetry. The holes are on the vertices of the dual structure which is

known as the Kelvin structure (Thomson, 1887) or the sodalite

structure and are at the positions of the invariant lattice complex W*.

The tiling is the familiar tiling of space with truncated octahedra

(Fig. 1a). The structure has two kinds of face (transitivity h1121i) so it

is not regular.

The body-centered cubic cylinder packing labeled ÿ (O'Keeffe et

al., 2001) has the same density as the body-centered cubic sphere

packing (fraction of space ®lled = 31/2�/8 = 0.680 . . . ) and also has

tetrahedral holes which fall at the positions [(3/8, 0,1/4) etc.] of the

invariant lattice complex S* with symmetry Ia�3d. This set of points

may be considered the dual of the cylinder packing in the sense that

the points are in the holes of the original packing. They are the

tetrahedral positions in the garnet structure, i.e. the Si positions in the

prototypical garnet grossular, Ca3Al2Si3O12. The 4-connected net of

the S* structure can also be considered as carried by a simple tiling in

which the tiles are in®nite in one direction and the axes run in the

cubic h111i directions, Fig. 1(b). All the vertices, edges, faces and tiles

of this structure are related by symmetry so the transitivity is h1111i.
We believe that the structure just described (Fig. 1b) is the only

simple tiling with transitivity h1111i. Certainly it is easy to show that

any such tiling must have tiles that are in®nite and have hexagonal

faces. For a simple tiling in which the average number of edges per

face is hni and there are F/P faces per polyhedron (recall that each

face is shared between two polyhedra), it follows (O'Keeffe & Hyde,

1996) from Euler's equation that hni = 6 ÿ 6P/F. Tiling of space by

simple polyhedra with all ®ve-sided faces (i.e. regular dodecahedra)

are well known to be impossible, and if hni = 6 then P/F = 0, i.e. there

is an in®nite number of faces per polyhedron.

3. Related structures with symmetry Ia�3�3d

A 4-connected structure related to S* is obtained by replacing the

vertices of that net by regular tetrahedra of vertices (O'Keeffe, 1991).

The symmetry remains Ia�3d and the vertices are in general positions
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(0.065,0.224, 0.424) etc. This net, labeled S*4, is that of the sphere

packing 4/3/c32 of Fischer (1974), and is carried by a simple tiling of

space with in®nite tiles with 3- and 12-sided faces and tetrahedra (Fig.

1c). The structure is still uninodal (transitivity h1322i) so it provides a

second new example of a uninodal simple tiling. Counting faces and

polyhedra is performed as follows. Three 12-rings and three 3-rings

meet at each vertex so there are 3/3 + 3/12 = 5/4 faces per vertex. The

number of in®nite polyhedra is vanishingly small compared to the

tetrahedra of which there are 1/4 per vertex. Accordingly, P/V = 1/5

and hni = 24/5 as may be readily con®rmed by direct counting.

The S* structure is also carried by a tiling with the same symmetry

that uses ®nite tiles (Fig. 1d). In fact, we consider this second tiling the

natural tiling of the structure as there is a one-to-one correspondence

between the strong rings of the structure and the faces of the tiles.1

Each tile has ®ve hexagonal faces so the dual of this structure is a

5-connected net. The dual tiling is shown in Fig. 1(e): each tile has

eight vertices (it corresponds to the carbon framework of stellane,

tricyclooctane) and a fragment of the net that it carries is shown in

Fig. 1( f ). This last structure is not a 5-coordinated sphere packing as

there are two different edge lengths. The vertices of this structure

correspond to the points of invariant lattice complex Y** [positions

(1/8, 1/8, 1/8) etc.]. As illustrated in the ®gure, these points lie on the

axes of the cylinder packing. It is an example of a structure in which

all rings are 5-membered. The structure of -Si is closely related

(O'Keeffe & Hyde, 1996).

There is a third invariant cubic lattice complex unique to Ia�3d,

namely V* [positions (1/8,0,1/4) etc.]. It is also simply related to the

cylinder packing ÿ, as the points are the points of contact of the

cylinders. These are the Ca positions in grossular garnet.

4. Other uninodal simple tilings

It is now well established (Delgado Friedrichs & Huson, 1999) that

there are exactly nine simple tilings of space by ®nite polyhedra. They

are of considerable interest (Delgado Friedrichs et al., 1999) as six of

them, zeolite codes (Baerlocher et al., 2001) SOD, LTA, RHO, FAU,

KFI and CHA, correspond to common zeolite structure types,

including several of the most important with particularly open

structures. Delgado Friedrichs & Huson (2000) showed that most of

the other uninodal zeolite nets can be described with tilings in which

some of the tiles have vertices at which only two edges meet (non-

simple `polyhedra'). It transpires that at least four of these, those with

zeolite codes ATN, CAN, GME, MER, can be described by a

combination of in®nite and ®nite tiles, much as the structure S*4

described above; however, now all the in®nite tiles are parallel. Thus,

if in®nite tiles are allowed, there are at least six new uninodal simple

tilings to be added to the nine with ®nite polyhedra. However, we

note that these new tilings are not natural tilings in the sense indi-

cated above.
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Figure 1
(a) Tiling by truncated octahedra (Kelvin structure). (b) The tiling by in®nite
polyhedra. (c) A tiling by a combination of in®nite polyhedra and tetrahedra (red).
(d) The structure in (b) broken up into congruent tiles with ®ve faces. (e) The tiling
dual to that in (d); the tiles are congruent and have four faces. ( f ) The structure
dual to that in (d) shown as a ball and spoke model; each ball corresponds to the
center of a tile in (d).

1 A strong ring is one that is not the sum of smaller rings (Goetzke & Klein,
1991). The S* structure has only six-membered rings, so they are of necessity
all strong.


